

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

Área Anardi 5, E-20730 Azpeitia Gipuzkoa-Spain Tel: +34 946 430 850 Lab_services@tecnalia.com www.tecnalia.com

European Technical Assessment

ETA 23/0854 of 10/11/2023

General Part

Technical Assessment Body issuing the ETA:	TECNALIA RESEARCH & INNOVATION		
Trade name of the construction product	RINFOR SYSTEM 5 – CRM		
Product family to which the construction product belongs	PAC 34: BUILDING KITS, UNITS, AND PREFABRICATED ELEMENTS.		
Manufacturer	AZICHEM S.r.I. Via G. Gentile 16/A 46044 Goito (MN), Italy www.azichem.com		
Manufacturing plants	Factory 1		
This European Technical Assessment contains	27 pages including three Annexes which form an integral part of this assessment.		
This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of	EAD 340392-00-0104 CRM (Composite Reinforced Mortar) systems for strengthening concrete and masonry structures.		

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body – Tecnalia Research & Innovation. Any partial reproduction has to be identified as such.

· · · · •

1. Technical description of the product
2. Specification of the intended use in accordance with European Assessment Document EAD 340392-00-0104 (EAD hereinafter)4
3. Performance of the product and references to the methods used for its assessment 5
3.1 Mechanical resistance and stability (BWR 1)5
3.2 Safety in case of fire (BWR2)6
4. Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base
5. Technical details necessary for the implementation of the AVCP system, as provided for in EAD
ANNEX A: MATERIAL PROPERTIES8
ANNEX B: SPECIFICATION OF INTENDED USE
ANNEX C: MECHANICAL PROPERTIES

••••

:

· · · · · · · · · ·

••

Specific parts

1. Technical description of the product

RINFOR SYSTEM 5 – CRM is a CRM (Composite Reinforced Mortar) system composed of different components, namely:

- GFRP (Fibre Reinforced Polymer) mesh (preformed)
- GFRP mesh corner elements (preformed)
- GFRP connectors (preformed).

This ETA refers to the GFRP meshes, GFRP corner elements and GFRP connectors used as single products, as a part of CRM systems for strengthening concrete and masonry structures.

This ETA refers to the following components, whose geometrical and physical properties are reported in Annex A:

- Three types of meshes:
 - ARMAGLASS STRUCTURA 33
 - ARMAGLASS STRUCTURA 66
 - ARMAGLASS STRUCTURA 99
- Three types of mesh corner elements:
 - ARMAGLASS CORNER 33
 - ARMAGLASS CORNER 66
 - ARMAGLASS CORNER 99
- Two types of "L shaped" preformed connectors:
 - ARMAGLASS CONNECTOR L 6
 - ARMAGLASS CONNECTOR L 8
- Two types of straight preformed connectors:
 - ARMAGLASS BAR CONNECTOR 6
 - ARMAGLASS BAR CONNECTOR 8

The GFRP meshes and the corner elements are constructed utilising bars made with a fiberglass core and coated with epoxy resin. The bars are fixed in the nodes with a stitching thread, with cells of square dimensions.

Meshes are named "ARMAGLASS STRUCTURA" followed by numbers which identify the mesh (for example 33 which identify a 33x33 mm mesh).

The corner elements are named "ARMAGLASS CORNER" followed by numbers that identify the mesh (for example 33 which identify a 33x33 mm mesh).

The connectors are preformed in an L shape or straight shape with related round dowel. The connectors are made with fiberglass impregnated with a thermosetting epoxy resin. The number following the name identifies the thickness of the wire.

The GFRP meshes, the corner elements and the connectors (of the CRM system) have been designed to be used coupled with mortar, in highly specialized applications for the structural reinforcement of existing and new masonry and concrete elements. Due to the special features of the system, its effectiveness is substantial above all for elements in which two dimensions are preponderant with respect to the other (e.g., height and length with respect to thickness) such as walls, vaults, etc. The application of this composite system is needed to increase the load-bearing capacity, increase the resistance and ductility of these elements. The reinforcement of these structural elements is effective both in the static and dynamic fields. These interventions can also be performed in structures present in environments subject to aggressive climatic conditions.

Concerning product packaging, transport and storage it is the responsibility of the manufacturer to undertake the appropriate measures and to advise his clients on the transport and storage, as he considers necessary in order to reach the declared performances.

The information about installation is provided with the technical documentation from the manufacturer and it is assumed that the product will be installed according to it or (in absence of such instructions) according to the usual practice of the building professionals.

The specifications and conditions given by the manufacturer are summarized in Annex B.

The performances assessed in this European Technical Assessment, according to the applicable EAD, are based on an assumed intended working life of at least 50 years, provided that the conditions for the installation, packaging, transport, storage, installation as well as appropriate use, maintenance and repair are met. The indications given on the working life cannot be interpreted as a guarantee given by the manufacturer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

...

The tests for performance assessment were carried out in compliance with EAD 340392-00-0104 according to the test methods reported herein, as well for what concerns sampling, conditioning and testing provisions.

The numbering (#) in the following tables corresponds to the numbering of Table 2.1, Table 2.2, Table 2.3 and Table 2.4 of EAD 340392-00-0104.

3.1 Mechanical resistance and stability (BWR 1)

#	Essential characteristic	Performance
1	Tensile strength (longitudinal and orthogonal direction)	
2	Ultimate strain	Annex C, Section C1, Table 5 and Table 6
3	Young's Modulus	
4	Shear resistance of the mesh junction (in the two orthogonal directions)	Annex C, Section C1, Table 7
5	Freezing and thawing resistance	Annex C, Section C2, Table 8 and Table 9
6	Water resistance	Annex C, Section C2, Table 10 and Table 11
7	Saltwater resistance	Annex C, Section C2, Table 12 and Table 13
8	Alkali resistance	Annex C, Section C2, Table 14 and Table 15
9	Glass Transition Temperature	Annex C, Section C3, Table 16

3.1.1. GFRP mesh (Table 2.2 of EAD)

3.1.2. GFRP mesh corner element (Table 2.3 of EAD)

# ^(a)	Essential characteristic	Performance
1	Tensile strength	Annex C, Section C4, Table 17
2	Freezing and thawing resistance	Annex C, Section C2, Table 8 and Table 9
3	Water resistance	Annex C, Section C2, Table 10 and Table 11
4	Saltwater resistance	Annex C, Section C2, Table 12 and Table 13
5	Alkali resistance	Annex C, Section C2, Table 14 and Table 15
6	Glass Transition Temperature	Annex C, Section C3, Table 16

^(a) #2, #3, #4, #5 and #6: tests covered with those carried out on the mesh.

3.1.3. GFRP connector (Table 2.4 of EAD)

#	Essential characteristic	Performance
1	Tensile strength	
2	Ultimate strain	Annex C, Section C5, Table 18
3	Young's Modulus	
4	Pull-out from reference substrates	Annex C, Section C7, Table 21 and Table 22
5	Lap-tensile strength	Annex C, Section C5, Table 19
6	Freezing and thawing resistance	Annex C, Section C8, Table 23 and Table 24
7	Water resistance	Annex C, Section C8, Table 25 and Table 26
8	Saltwater resistance	Annex C, Section C8, Table 27 and Table 28
9	Alkali resistance	Annex C, Section C8, Table 29 and Table 30
10	Glass Transition Temperature	Annex C, Section C9, Table 31

••

• • • •

3.2 Safety in case of fire (BWR2)

3.1.1. CRM kit (Table 2.1 of EAD)

#	Essential characteristic	Performance	
21	Reaction to fire	No performance assessed	

...

:

4. Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 340392-00-0104, the applicable European legal act is: Decision 1999/469/EC.

The AVCP system to be applied is: 2+.

5. Technical details necessary for the implementation of the AVCP system, as provided for in EAD

Technical details necessary for the implementation of the Assessment and Verification of Constancy of Performance (AVCP) system are laid down in the control plan deposited at Tecnalia Research & Innovation.

The Control Plan is a confidential part of the ETA and is only handed over to the notified body involved in the assessment and verification of constancy of performance.

Issued in Azpeitia, on 10/11/2023

Innovation and Conformity Assessment Point Tecnalia Research & Innovation

••

. . . .

Table 1: GFRP MESH PROPERTIES

Mesh reference		ARMAGLASS STRUCTURA 33		ARMAGLASS STRUCTURA 66		ARMAGLASS STRUCTURA 99	
Appearance							
Geometrical and physical cha	racterist	tics					
	Unit	Weft	Warp	Weft	Warp	Weft	Warp
Nominal bar sizes (diameter)	mm	3	3	3	3	3	3
Nominal bar cross sectional area	mm²	7.07	7.07	7.07	7.07	7.07	7.07
Nominal area of fibres	mm ²	4.5	4.5	4.5	4.5	4.5	4.5
Mesh size	mm	33*33		66*66		99*99	
Bars/meter for each side	n	30 30		15 15		10 10	
Weight per surface unit	g/m²	83	30	450		310	
Weight (mean value, comprehensive of weft and wrap threads)	%	75 weft 75 warp		75 weft 75 warp		75 weft 75 warp	
Colour	-	Black Black			ack	Bla	ack
Packaging	-		Roll he Rol Sheet Shee	eight from 105 cm to 240 cm Il length from 10 to 100 m width from 80 cm to 240 cm t length from 200 to 600 cm			
Chemical and physical charac	teristics	5					
Fibre properties							
Fibre type	-		Text	ile glass fib	ore (continu	ious)	
Fibre density	g/cm ³	2.	62	2.62		2.	62
Yarn linear density	tex	9600 9600		9600	9600	9600	9600
Resin properties							
Resin type	-	Thermosetting epoxy resin					
Resin density (hardened, polymerized)	g/cm ³	1.2 1.2 1.2				.2	
Resin glass transition temperature	º C	104 104 104					

••••

:

••

Table 2: GFRP MESH CORNER ELEMENT PROPERTIES

· · · ·

••

•••

:

••

. .

.

Corner reference		ARMAGLASS CORNER 33	ARMAGLASS CORNER 66	ARMAGLASS CORNER 99		
Appearance						
Geometrical and physical cha	aracteris	tics				
	Unit	Weft Warp	Weft Warp	Weft Warp		
I otal height of the	mm	1050	1050	1050		
Side length	mm	250	250	250		
Nominal bar sizes (diameter)	mm	3 3	3 3	3 3		
Nominal bar cross sectional	mm ²	7.07	7.07	7.07		
area		7.07	7.07	7.07		
Nominal area of fibres	mm ²	4.5 4.5	4.5 4.5	4.5 4.5		
Bars/meter for each side	nm	30 30	15 15	99 99		
Curvature radius	mm	10	10	10		
Weight	g/m	436	218	155		
Fibre content by Weight (<i>mean value,</i> <i>comprehensive of weft and</i> <i>wrap threads</i>)	%	75 weft 75 warp	75 weft 75 warp	75 weft 75 warp		
Colour	-	Black	Black	Black		
Packaging	-		40 pcs per box			
Chemical and physical chara	cteristics	3				
Fibre properties		-				
Fibre type	-	Textile glass fibre (continuous)				
Fibre density	g/cm ³	2.62 2.62		2.62		
Yarn linear density	tex	9600 9600	9600 9600	9600 9600		
Resin properties			· · ·			
Resin type	-	Thermosetting epoxy resin				
Resin density (hardened, polymerized)	g/cm ³	1.2 1.2 1.2		1.2		
Resin glass transition temperature	⁰ C	104	104	104		

· · · ·

••

Connector reference		ARMAGLAS CONNECTOR L 6	ARMAGLAS CONNECTOR L 8
Appearance		5	
Geometrical and physical ch	aracteris	stics	
	Unit	Value	Value
Long side length	mm	150 - 1000	150 - 1000
Short side length	mm	100	100
Nominal diameter	mm	6	8
Nominal cross sectional area	mm ²	28.26	50.24
Weight	g/m	54	92
Fibre content by Weight (<i>mean value</i>)	%	75	75
Colour	-	Black	Black
Packaging	-	Box of 100	connectors
Chemical and physical chara	cteristic	S	
Fibre properties			
Fibre type	-	Textile glass fil	pre (continuous)
Fibre density	g/cm ³	2.62	2.62
Yarn linear density	tex	45600	74400
Resin properties			
Resin type	-	Thermosettir	ig epoxy resin
Resin density (hardened, polymerized)	g/cm ³	1.2	1.2
Resin glass transition	º C	103	103

•••

:

••

. . . .

.

Table 4: GFRP "STRAIGHT" CONNECTOR PROPERTIES

· · · · ·

••

•••

:

••

.

.

Connector reference		ARMAGLASS BAR CONNECTOR 6	ARMAGLASS BAR CONNECTOR 8			
Appearance						
Geometrical and physical ch	aracteris	stics				
	Unit	Value	Value			
Long side length	mm	150 - 3000	150 - 3000			
Nominal diameter	mm	6	8			
Nominal cross sectional area	mm ²	28.26	50.24			
Weight	g/m	54	92			
Fibre content by Weight (<i>mean value</i>)	%	75	75			
Colour	-	Black	Black			
Packaging	-	Box of 100	connectors			
Chemical and physical chara	cteristic	S				
Fibre properties	-					
Fibre type	-	Textile glass fil	ore (continuous)			
Fibre density	g/cm ³	2.62	2.62			
Yarn linear density	tex	45600	74400			
Resin properties						
Resin type	-	Thermosetting epoxy resin				
Resin density (hardened, polymerized)	g/cm ³	1.2	1.2			
Resin glass transition temperature	º C	103	103			

ANNEX B: SPECIFICATION OF INTENDED USE

B.1. STORAGE CONDITIONS

All materials must be stored in their original packaging in dry environments, at temperatures between +5°C and +35°C, taking care not to damage them during handling. The materials must be protected from direct sunlight and the action of atmospheric agents.

B.2. INSTALLATION CONDITIONS

Temperature range of use: between +5°C and +35°C.

B.3. INSTALLATION INSTRUCTIONS

1. Remove the existing plaster and all the degraded parts, saturate the support with low pressure water, apply if necessary a scratch coat of mortar.

2. Position the GFRP mesh on the surface at half the expected thickness of the intervention using appropriate spacers if necessary. Overlap the mesh bands for at least 15 cm in all corner areas apply GFRP corner.

3. Drill the holes where the connectors will be inserted.

4. Clean the hole and inject with vinylester-based resin to anchor the connector.

5. Install the GRP straight connectors and GRP L-connectors as connecting elements of the reinforcement system.

5.1. "L" connectors: Before inserting the connector in the hole, place a GFRP distribution gusset which will be blocked against the mesh during the grouting phase of the same.

5.2. "Straight" connectors (with round dowel): The round dowel can be glued with epoxy resin before or after inserting the straight connector.

6. Wait for the resin used to grout the connectors to harden and apply one or more coats (depending on the required reinforcement thickness and the mortar used) of the mortar on the surface.

ANNEX C: MECHANICAL PROPERTIES

••

• • • •

C1: GFRP MESH - MECHANICAL PROPERTIES

Table 5: Mechanical properties of GFRP mesh in warp direction

Product	Tensile Strength $\sigma_{u,m}$ (MPa)		Tensile Strain ε _{u,m} (%)		Modulus of elasticity E _m (GPa)	
Troduct	Average	Characteristic value	Average	Characteristic value	Average	Characteristic value
33x33	859	728	2.14	1.85	40.61	37.69
66x66	881	712	2.29	1.74	42.07	40.32
99x99	833	730	2.25	1.95	40.03	38.03

Table 6: Mechanical properties of GFRP mesh in weft direction

Product	Tensile Strength $\sigma_{u,m}$ (MPa)		Tensile Strain ε _{u,m} (%)		Modulus of elasticity E _m (GPa)	
	Average	Characteristic value	Average	Characteristic value	Average	Characteristic value
33x33	915	771	2.28	1.70	42.01	40.25
66x66	964	805	2.48	1.95	42.24	40.89
99x99	903	796	2.31	1.96	39.45	36.31

Table 7: Shear resistance of the mesh junction

	Shear resistance F _{junc} (kN)			
	Warp		W	/eft
Product	Average	Characteristic value	Average	Characteristic value
33x33	0.669	0.383	0.618	0.381
66x66	0.663	0.362	0.707	0.464
99x99	0.731	0.511	0.617	0.381

...

:

Freeze-thaw exposure conditions:

All samples were conditioned in a humidity chamber for a week, at a relative humidity >90% and at a temperature of $38\pm2^{\circ}$ C; they were then subjected to 20 freeze-thaw cycles. Each cycle consisted of at least 4 hours at -18±1 °C, followed by 12 hours in a humidity chamber (>90% relative humidity, $38\pm2^{\circ}$ C).

Table 8: Resistance of GFRP mesh specimens after freeze-thaw exposure

Product	Direction	Tensile Strength σ _{u,FT} (MPa)	Tensile Stress ε _{u,FT} (%)	Modulus of elasticity E _{FT} (GPa)
		Average	Average	Average
66766	WARP	833	2.09	41.35
00X00	WEFT	948	2.44	41.30

No surface changes were evidenced.

Table 9: Freezing and thawing resistance – Retained tensile properties

Broporty	Broduct (1)	WARP	WEFT	
Property	FIGULEL	Retained	Retained	
Topoilo	66x66			
Strength	33x33	94.6%	98.3%	
	99x99			
Modulus of	66x66			
elasticity	33x33	98.3%	97.8%	
elasticity	99x99			

All samples were conditioned according to Section 2.2.2.4 of EAD 340210-00-0104 for 1000 and 3000 hours at a temperature of $38\pm2^{\circ}$ C and relative humidity > 90%.

Product	Direction	Exposure time	Tensile Strength σ _{u,w} (MPa) Average	Tensile Stress ε _{u,w} (%) Average	Modulus of elasticity E _w (GPa) Average
		1000h	839	2.15	41.45
66v66	WARP	3000h	846	2.28	41.38
00,00	WEET	1000h	881	2.39	41.93
	WEFT	3000h	890	2.55	39.80

Table 10: Resistance of GFRP mesh specimens after water exposure

No surface changes were evidenced.

Table 11.	Water	resistance -	Retained	tensile	nronerties
	walei	resistance -	netaineu	lensie	properties

Property Product (1)		Exposure	WARP	WEFT
Property	FIODUCL **	time	Retained	Retained
Tensile	66x66	1000h	95.2%	91.4%
Strength	th 33x33 99x99	3000h	96.1%	92.3%
Modulus of	66x66	1000h	98.5%	99.3%
elasticity	33x33 99x99	3000h	98.4%	94.2%

All samples were conditioned by immerging specimens in saltwater (solution of 245 g NaCl and 40.94 g Na_2SO_4 for 10 l of distilled water) for 1000 and 3000 hours at a temperature of $23\pm2^\circ$ C.

:

...

Table 12: Resistance of GFRP mesh specimens after saltwater exposure

Product	Direction	Exposure time	Tensile Strength σ _{u,sw} (MPa) Average	Tensile Stress ε _{u,sw} (%) Average	Modulus of elasticity E _{sw} (GPa) Average
		1000h	901	2.27	41.09
66766	WANE	3000h	873	2.21	41.06
00x00	WEET	1000h	962	2.38	41.52
	WEFT	3000h	934	2.34	42.21

No surface changes were evidenced.

Table 13: Saltwater resistance – Retained tensile properties

Property	Product (1)	Exposure	WARP	WEFT
Froperty	FIGUUCI	time	Retained	Retained
Tensile	66x66	1000h	102.3%	99.7%
Strength	th 33x33 99x99	3000h	99.1%	96.9%
Modulus of	66x66	1000h	97.7%	98.3%
elasticity	33x33 99x99	3000h	97.6%	99.9%

Alkali exposure conditions:

All samples were conditioned by immerging specimens in an alkaline solution (pH=12.5) for 1000 and 3000 hours at a temperature of $23\pm2^{\circ}$ C.

Product Direction		Exposure	Tensile Strength σ _{u,alk} (MPa)	Tensile Stress ε _{u,alk} (%)	Modulus of elasticity E _{alk} (GPa)
		ume	Average	Average	Average
		1000h	860	2.00	42.90
66,466	WARP	3000h	859	2.28	41.11
00X00	WEET	1000h	923	2.40	41.89
WEFT	3000h	923	2.41	37.91	

Table 14: Resistance of GFRP mesh specimens after alkali exposure

No surface changes were evidenced.

Table	15: Alkali	resistance -	Retained	tensile	properties
I GOIC		resistance	notanica	CONSILC	properties

Broporty	Proporty Product (1)		WARP	WEFT
Property	FIODUCL **	time	Retained	Retained
Tensile	66x66	1000h	97.6%	95.8%
Strength	33x33 99x99	3000h	97.5%	95.8%
Modulus of	66x66	1000h	102.0%	99.2%
elasticity	33x33 99x99	3000h	97.7%	94.0%

. . . .

...

Table 16: Glass transition temperature of GFRP mesh

Product ⁽¹⁾	Tg (minimum)
66x66	
33x33	104ºC
99x99	

⁽¹⁾ Products in bold letters are those directly tested

C4: GFRP MESH CORNER ELEMENT - MECHANICAL PROPERTIES

Table 17: Tensile resistance	of GFRP m	mesh corner	elements
------------------------------	-----------	-------------	----------

Product ⁽¹⁾	Tensile res	sistance T (kN)	Tensile resista of the current	nce in the direction threads ⁽²⁾ F _{u,mc} (kN)
Trouble	Average	Characteristic value	Average	Characteristic value
66x66 33x33 99x99	3.63	3.02	2.56	2.13

⁽¹⁾ Products in bold letters are those directly tested

 $^{(2)} \ F_{u,mc} = 0.707 \ T$

...

:

...

Table 18: Mechanical properties of the GFRP connectors

:

Product ⁽¹⁾	Tensile Strength $\sigma_{u,con}$ (MPa)		Tensile	e Strain ε _{u,con} (%)	Modulus of elasticity E _{con} (GPa)	
	Average	Characteristic value	Average	Characteristic value	Average	Characteristic value
ARMAGLASS BAR CONNECTOR 6 ARMAGLASS CONNECTOR L 6	926	828	2.20	1.93	44.95	42.85
ARMAGLASS BAR CONNECTOR 8 ARMAGLASS CONNECTOR L 8	966	879	2.37	2.19	43.36	41.41

⁽¹⁾ Products in bold letters are those directly tested.

Table 19: Lap tensile test results for GFRP connectors

Product ⁽¹⁾	Load	d at failure ⁼ c (kN)	Lap-tensile strength σ_{lap} (MPa)		
	Average	Characteristic value	Average	Characteristic value	
ARMAGLASS BAR CONNECTOR 6 ARMAGLASS CONNECTOR L 6	25.53	22.76	903	805	
ARMAGLASS BAR CONNECTOR 8 ARMAGLASS CONNECTOR L 8	41.00	33.61	816	669	

⁽¹⁾ Products in bold letters are those directly tested.

⁽²⁾ Properties of anchor used in the pull-out tests are shown in Table C12.

The used overlap length I_{lap} was 110 mm.

· · · ·

••

Generic type a	nd use		Bonded anchor for anchorage of rebars									
ESSENTIAL C	HARACTERIS	TICS	PERF	ORMAN	ICES							
Installation pa	rameters		Ф8	Φ10	Φ12	Ф14	Φ16	Ф20	Ф24	Φ25	Ф28	Ф32
Rebar diameter	r Φ [mm]	d=d _{nom}	8	10	12	14	16	20	24	25	28	32
Drill hole diame	eter [mm]	do	10/12	12/14	14/16	18	20	25	30	32	30	32
Effective ancho	orage depth	h _{ef} Min	60	60	70	75	80	90	96	100	112	128
[mm]		h _{ef} Max	160	200	240	280	320	400	480	500	560	640
Minimum thickr concrete memb	ness of per [mm]	h _{min} h _{ef} + 30 mm ≥ 100 mm; h _{ef} + 2d0										
Minimum allow [mm]	able spacing	S _{min}	40	50	60	70	75	95	120	120	130	150
Minimum allowable edge distance [mm]		Cmin	35	40	45	50	50	60	70	70	75	85
Rebars: Steel E Rotopercussion concrete	3450C, Concre n drill, air drill, E	te - C20/25, Dry and wet	Ф8	Ф10	Φ12	Ф14	Φ16	Ф20	Ф24	Φ25	Ф28	Ф32
	non- cracked	N _{Rec,stat} (kN)	14.3	20	27	28.9	32.7	51.9	68.8	71.3	92.6	103.9
40°C/24°C ⁽¹⁾⁽²⁾		N _{Rec,stat} (kN)	6.7	9.4	16.8	20.2	22.9	36.3	48.1	49.9	64.8	72.7
Ψsus0=0,80	cracked	N _{Rec,eq, C1} (KN)	6.7	9.4	16.8	20.2	22.9	36.3	48.1	49.9	64.8	
	non- cracked	N _{Rec,stat} (kN)	11.5	16.2	23.7	28.9	32.7	51.9	68.8	71.3	92.6	103.9
72°C/50°C ⁽¹⁾⁽²⁾		N _{Rec,stat} (kN)	5.7	8.1	13.8	16.9	20.9	35.6	48.1	49.9	64.8	72.7
Ψsus0=0,68	cracked	N _{Rec,eq,} C1 (KN)	5.7	8.1	13.8	16.9	20.9	35.6	48.1	49.9	64.8	
Cutting effort	non- cracked	V _{Rec,stat} (kN)	6.7	10.5	14.8	20.3	23.4	38.4	52.2	54.4	71.8	82.1
without lever		V _{Rec,stat} (kN)	6.7	9.5	13.2	14.4	16.6	27.2	36.9	38.5	50.8	58.2
arm ⁽³⁾⁽⁴⁾	cracked	V _{Rec,eq, C1} (kN)	6.7	9.5	13.2	14.4	16.6	27.2	36.9	38.5	50.8	58.2

Table 20: Properties of the Epoxy resin used in lap-tensile

. . . .

:

••

Table 21: Properties of the Vinylester resin used pull-out test

:

••

. . . .

Generic type and use	DICT			Bonded	anchor f	or ancho	rage of re	bars			
Installation parameters		105		M8		L3 M12	M16	M20	M24	M27	M30
Rebar diameter Φ [mm] d		d	8	10	12	16	20	24	27	30	
Drill hole diameter [mm]			do	10	12	14	18	24	28	30	35
Diameter of the hole [mm]			d _{fix}	9	12	14	18	22	26	30	35
Depth of the hole [mm]			h ₁				h _{ef} +	5mm			
Minimum thickness of concre	ete sub	ostrate [mm]	h _{min}		MA	X {hef +	30 mm 2	≥ 100 m	m; h _{ef} +	2d ₀ }	
Tightening torque [Nm]			T _{Fix}	10	20	40	80	130	200	250	280
Fixable thickness [mm]			t _{fix}				0 to	1500			
Minimum allowable spacing	[mm]		Smin	40	50	60	75	100	115	120	140
Minimum allowable edge dis	tance	[mm]	Cmin	40	50	60	75	100	115	120	140
Partial factor of safety relate	d to	Category I1	γ _{inst} (-)				1.0	00			
the installation of the anchor	age	Category I2	γ _{inst} (-)				1.:	20			
Resistance to tensile loads Combined strength of pull	s -out ar	nd concrete c	one	M8	M10	M12	M16	M20	M24	M27	M30
Concrete C20/25	-40°0 (T _{mlp}	C/+40°C = 24°C)	$ au_{ m Rk, ucr}$ [Nmm ²]	16.0	12.0	12.0	12.0	9.5	9.5	8.0	8.0
Concrete C20/25	-40°0 (Tmlp	C/+80°C = 50°C)	$ au_{Rk,ucr}$ [Nmm ²]	11.0	8.5	8.5	8.5	7.0	7.0	6.0	6.0
Concrete C20/25	-40°0 (T _{mlp}	C/+120°C = 72°C)	τ _{Rk,ucr} [Nmm²]	6.0	4.5	4.5	4.5	4.0	4.0	3.0	3.0
Cracked concrete C20/25	-40°0 (T _{mlp}	C/+40°C = 24°C)	τ _{Rk,cr} [Nmm ²]	-	9.0	9.0	9.0	6.5	-	-	-
Cracked concrete C20/25	-40°0 (T _{mlp}	C/+80°C = 50°C)	τ _{Rk,cr} [Nmm ²]	-	6.5	6.5	6.5	4.5	-	-	-
Cracked concrete C20/25	-40°0 (T _{mlp}	C/+120°C = 72°C)	τ _{Rk,cr} [Nmm ²]	-	3.5	3.5	3.5	2.5	-	-	-
Increasing factor for cracked C30/37	concr	ete classes	Ψc,uc/ucr [-]	1.12							
Increasing factor for cracked C40/50	concr	ete classes	Ψc,uc/ucr [-]	1.23							
Increasing factor for cracked C50/60	concr	ete classes	Ψ _{c,uc/ucr} [-]	1.30							
Resistance to tensile loads Characteristic strength for	s the co	oncrete cone	1	M8	M10	M12	M16	M20	M24	M27	M30
K _{ucr,N}					1		11	.0			
K _{cr,N}			7.7								
C _{cr,N}			1.5 h _{ef}								
S _{cr,N}						3.0	h _{ef}				
Resistance to tensile loads Concrete cracking resistance			M8	M10	M12	M16	M20	M24	M27	M30	
		If $h = h_{min}$		2.5	h _{ef}	2.0	h _{ef}		1.5	h _{ef}	
C _{cr,sp} [mm]		If h _{min} < h <	: 2h _{min}				Interpola	ted value			
		If $h \ge 2h_{min}$					Cc	r,Np			
S _{cr,sp} [mm]					2.0 (C _{cr,Np}					

ETA 23/0854, version 1, issued on 10/11/2023 - page 21 of 27

...

.

...

Product ⁽¹⁾	Substrate ⁽²⁾	Anchorage L _{anc} (mm)	Pull-out load P _{anc} (kN)	Failure mode
	Concrete		16.61	1+3
ARMAGLASS BAR CONNECTOR 6	Clay	120	6.07	2
ARMAGLASS CONNECTOR L 6	Tuff	120	5.34	2
	Natural stone		10.53	2+3
	Concrete		29.70	1+3
ARMAGLASS BAR CONNECTOR 8	Clay	100	14.90	2
ARMAGLASS CONNECTOR L 8	Tuff	120	10.90	2
	Natural stone		9.20	2

Table 22: Pull-out from reference substrates

⁽¹⁾ Products in bold letters are those directly tested.

⁽²⁾ Properties of anchor used in the pull-out tests are shown in Table C12.

Failure mode:

- 1. failure due to sliding of the connector
- 2. failure at the anchoring-substrate interface
- 3. failure of the substrate and/or substrate cone failure
- 4. failure of the connector

Table 23: Properties of substrates

Substrate	Compressive strength of material f _b (MPa)
Concrete	60.5
Clay	20.8
Tuff	4.1
Natural stone	120.0

Freeze-thaw exposure conditions:

All samples were conditioned in a humidity chamber for a week, at a relative humidity >90% and at a temperature of 38±2°C; they were then subjected to 20 freeze-thaw cycles. Each cycle consisted of at least 4 hours at -18±1 °C, followed by 12 hours in a humidity chamber (>90% relative humidity, 38±2°C).

Table 24: Resistance of GFRP connector after freeze-thaw exposure

Product	Tensile Strength σ _{u,FT} (MPa)	Tensile Stress ε _{u,FT} (%)	Modulus of elasticity E _{FT} (GPa)	
	Average	Average	Average	
ARMAGLASS BAR CONNECTOR 6	892	2.44	45.08	
ARMAGLASS BAR CONNECTOR 8	870	2.99	40.46	

No surface changes were evidenced.

Table 25: Freeze-thaw resistance – Retained tensile properties

Product ⁽¹⁾	Property	Retained
ARMAGLASS BAR CONNECTOR 6	Tensile Strength	96.3%
ARMAGLASS CONNECTOR L 6	Modulus of elasticity	100.3%
ARMAGLASS BAR CONNECTOR 8	Tensile Strength	90.1%
ARMAGLASS CONNECTOR L 8	Modulus of elasticity	93.3%

All samples were conditioned according to Section 2.2.2.4 of EAD 340210-00-0104 for 1000 and 3000 hours at a temperature of $38\pm2^{\circ}$ C and relative humidity > 90%.

••

Table 26: Resistance of GFRP connector after water exposure

Product	Exposure time	Tensile Strength σ _{u,w} (MPa)	Tensile Stress ε _{u,w} (%)	Modulus of elasticity E _w (GPa)	
		Average	Average	Average	
ARMAGLAS BAR	1000h	885	3.12	44.74	
CONNECTOR 6	3000h	837	2.00	44.29	
ARMAGLAS BAR	1000h	928	2.40	43.04	
CONNECTOR 8	3000h	900	2.09	43.21	

No surface changes were evidenced.

Table 27: Water resistance – Retained tensile properties

Product ⁽¹⁾	Property	Exposure time	Retained
	Tonsilo Strongth	1000h	95.5%
ARMAGLAS BAR CONNECTOR 6 ARMAGLASS CONNECTOR L 6		3000h	90.3%
	Modulus of	1000h	99.5%
	elasticity	3000h	98.5%
	Tonsilo Strongth	1000h	96.0%
ARMAGLAS BAR CONNECTOR 8		3000h	93.2%
ARMAGLASS CONNECTOR L 8	Modulus of	1000h	99.3%
	elasticity	3000h	99.7%

All samples were conditioned by immerging specimens in saltwater (solution of 245 g NaCl and 40.94 g Na_2SO_4 for 10 l of distilled water) for 1000 and 3000 hours at a temperature of $23\pm2^\circ$ C.

...

Table 28: Resistance of GFRP connector after saltwater exposure

Product	Exposure time	Tensile Strength σ _{u,sw} (MPa) Average	Tensile Stress ε _{u,sw} (%) Average	Modulus of elasticity E _{sw} (GPa) Average
ARMAGLAS BAR CONNECTOR 6	1000h	880	2.52	45.04
	3000h	851	2.20	44.60
ARMAGLAS BAR CONNECTOR 8	1000h	967	2.48	42.82
	3000h	892	1.98	43.91

No surface changes were evidenced.

Product ⁽¹⁾	Property	Exposure time	Retained
	Tonsilo Strongth	1000h	95.0%
ARMAGLAS BAR CONNECTOR 6	Tensile Strength	3000h	91.9%
ARMAGLASS CONNECTOR L 6	Modulus of elasticity	1000h	100.2%
		3000h	99.2%
	Topoilo Strongth	1000h	100.1%
ARMAGLAS BAR CONNECTOR 8	Tensile Strength	3000h	92.4%
ARMAGLASS CONNECTOR L 8	Modulus of	1000h	98.8%
	elasticity	3000h	101.3%

Table 29: Saltwater resistance – Retained tensile properties

All samples were conditioned by immerging specimens in an alkaline solution (pH=12.5) for 1000 and 3000 hours at a temperature of $23\pm2^{\circ}$ C.

:

...

Table 30: Resistance of GFR	P connector after	alkali exposure
-----------------------------	-------------------	-----------------

Product	Exposure time	Tensile Strength σ _{u,alk} (MPa)	Tensile Stress ε _{u,alk} (%)	Modulus of elasticity E _{alk} (GPa)
		Average	Average	Average
ARMAGLAS BAR CONNECTOR 6	1000h	938	2.51	44.75
	3000h	899	1.99	43.67
ARMAGLAS BAR CONNECTOR 8	1000h	889	2.30	41.82
	3000h	873	1.90	42.08

No surface changes were evidenced.

Product ⁽¹⁾	Property	Exposure time	Retained
	Tonsilo Strongth	1000h	101.2%
ARMAGLAS BAR CONNECTOR 6	Tensile Strength	3000h	97.1%
ARMAGLASS CONNECTOR L 6	Modulus of elasticity	1000h	99.6%
		3000h	97.1%
	Tancila Strangth	1000h	92.1%
ARMAGLAS BAR CONNECTOR 8	Tensile Strength	3000h	90.4%
ARMAGLASS CONNECTOR L 8	Modulus of elasticity	1000h	96.5%
		3000h	97.1%

C9: GFRP CONNECTORS - GLASS TRANSITION TEMPERATURE

••

. . . .

Table 32: Glass transition temperature of GFRP connectors

:

Product ⁽¹⁾	Tg (minimum)
ARMAGLAS BAR CONNECTOR 6 ARMAGLASS CONNECTOR L 6	103ºC
ARMAGLAS BAR CONNECTOR 8 ARMAGLASS CONNECTOR L 8	103ºC

⁽¹⁾ Products in bold letters are those directly tested.